高考復習的幾點感受
高二年級 吳磊
要想達到全體學生成績的普遍提高,改變高考中數(shù)學偏弱的狀況,必須加強對學生能力的培養(yǎng),增加數(shù)學練習時間。
第一步,指導學生強化基礎知識的復習;科學性是學習中要完成的第一步,記準公式,理解概念,有不少題目就是專門考察基本概念的,比如導數(shù)部分,圓錐曲線中求離心率的問題,抽象函數(shù)的性質(zhì)考察,三角函數(shù)的圖象變換,立體幾何中各種角的考察等等。這是高考中最容易出題,也是比較容易得分的地方。
第二步,積累一定的常規(guī)解題方法;積累豐富的解題方法,是解決數(shù)學問題必須具備的能力,比如二次函數(shù)的最值問題,定軸動區(qū)間,動軸定區(qū)間,這是二次函數(shù)中考察的一個重點內(nèi)容,貫穿整個高中階段。圓錐曲線與直線的位置關(guān)系處理辦法有聯(lián)立法,設而不求法,點差法,定義法,數(shù)形結(jié)合法,平面幾何法等,也要注意韋達定理與判別式的應用。數(shù)列中求通項的常用方法:定義法,利用前n項和求通項,數(shù)學歸納法,裂項法,構(gòu)造特殊數(shù)列法等。數(shù)列與不等式問題常用的解決方法:裂項法,放縮法,構(gòu)造函數(shù)法,數(shù)學歸納法等。直線和圓的相關(guān)問題中,可以考慮幾何法和代數(shù)法,當然更可以考慮利用平面幾何的方法求解。
培養(yǎng)學生解決問題的能力,必須從解題方法的多樣性出發(fā),根據(jù)題意,尋找條件與相關(guān)知識點的聯(lián)系,培養(yǎng)一題多解與多題一解的能力。優(yōu)秀的學生大都具備這種能力。
第三步,培養(yǎng)學生較熟練的運算能力;注意引導學生對基本運算能力的培養(yǎng),比如:二次三項式的配方,一元二次不等式的解法,因式分解的常用方法,分式的準確運算,不等式性質(zhì)的正確應用,注意對最后結(jié)果的化簡。三角函數(shù)中,注意化角為邊或化邊為角,合理利用正余弦定理,堅持先化簡后求值的原則。準確快速求出一個平面的法向量或一個向量的模長,正確解出兩條直線的交點坐標,獨立求解圓的一般方程等,這些都是完成一道綜合題目的基本能力,在高中的學習和復習備考中教師要反復強調(diào),及時糾正學生出現(xiàn)的問題。
第四步,形成較為系統(tǒng)的數(shù)學思想。在知識諸備的基礎上,教師要教給學生解題的基本思路,那就是滲透數(shù)學思想和方法,函數(shù)中數(shù)形結(jié)合與分類討論思想應用最多,數(shù)列與立體幾何中等價轉(zhuǎn)化思想應用廣泛,在解完題后,教師要和學生總結(jié)解題用到的知識和方法,體現(xiàn)的數(shù)學思想,這種做法我們稱為題后反思,不要認為很麻煩,堅持做下來,會收到事半功倍的效果,用多做幾道題的時間來思考,于學習能力,于學習成績有百利而無一害。
在高考前的最后階段,數(shù)學老師要進行選擇、填空和解答題的專項練習,針對知識點和知識交匯的綜合練習,中間穿插進行綜合試卷的練習,意在培養(yǎng)學生對本塊知識解決方法的熟練掌握,同時適應各種不同難度類型題目。進入第三輪綜合復習,大量練習各地市的模擬試卷,每周要用四到五套,結(jié)合選擇填空小卷的使用,不斷地采用定時定量的練習方式,促進學生對考試的適應能力。